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Abstract. The energy gap of the 1D AF-Heisenberg model in the presence of both uniform (H) and
staggered (h) magnetic fields is investigated using the exact diagonalization technique. The opening of the
gap in the presence of a staggered field is found to scale with hν , where ν = ν(H) is the critical exponent,
and depends on the uniform field. With respect to the range of the staggered magnetic field, two regimes
are identified through which the dependence of the real critical exponent ν(H) on H can be calculated
numerically. Our numerical results are in good agreement with the results obtained by other theoretical
approaches.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models

1 Introduction

The effect of external magnetic fields on the quantum
properties of low-dimensional magnets has been of much
interest in recent years. Experimental and theoretical
studies of these systems have revealed a plethora of
quantum fluctuation phenomena, not usally observed in
higher dimensions. The magnetization processes in an-
tiferromagnetic (AF) spin chains and ladders have been
under intensive investigation using novel numerical tech-
niques. Crucial experimental insights into the subject have
been provided by high-field neutron scattering measure-
ments [1–3], and the synthesis of magnetic, quasi-one di-
mensional systems such as the spin-1/2 antiferromagnet
Cu benzoate and Yb4As3 [4–6]. Consequently, it is now
possible observe the effect of a staggered magnetic field
(or even more complicated interactions) on the low en-
ergy behaviour of a one-dimentional quantum model in
the laboratory.

There are several mechanisms for generating a stag-
gered field in a real magnet [7–9]. In Cu benzoate the
alternating crystal axes are the source of such a field.
Dender et al. showed that an effective staggered field can
be generated by an alternating g-tensor [1]. Afflec et al.
have investigated theoretically how an effective staggered
field is generated by Dzyaloshinskii-Moriya (DM) interac-
tions when the crystal symmetry is sufficiently low [7].
They showed that in the presence of DM interactions
along the AF chain, an applied uniform field

−→
H gener-

ates an effective staggered field
−→
h . Ignoring small resid-
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ual anisotropies, they obtained an effective Hamiltonian
where a one-dimensional Heisenberg AF chain is placed
in perpendicular, uniform (H), and staggered (h) fields:

Ĥ =
∑

j

[
J
−→
S j .

−→
S j+1 −HSx

j + h (−1)j
Sz

j

]
. (1)

It is expected that a staggered field induces an excitation
gap in the S = 1/2 Heisenberg antiferromagnetic (AF)
chain, which should be otherwise gapless [7,10]. This ex-
citation gap caused by the staggered field is indeed found
in real magnets [1,6,11].

In the absence of the staggered magnetic field (h = 0)
and the uniform magnetic field (H = 0), the spectrum
is gapless. In the ground state, the system is in a spin-
fluid phase, where the decay of correlations follow a power
law. When a uniform magnetic field is applied, the spec-
trum of the system remains gapless until a critical field
Hc = 2J is reached. Here, a phase transition of the
Pokrovsky-Talapov type [12] occurs and the ground state
becomes a completely ordered ferromagnetic state [13].
Since the uniform magnetic field does not destroy the ex-
act integrability of the Heisenberg model, the eigenspec-
trum is exactly solvable. The integrability is lost upon
applying a staggered magnetic field. The application of
a staggered magnetic field when H = 0, produces an
antiferromagnetically ordered (Néel order) ground-state,
and induces a gap in the spectrum of the model. The
Heisenberg model in both staggered and uniform fields has
recently been investigated using the density matrix renor-
malization group (DMRG) formalism [14]. It is shown that
bound midgap states generally exist in open boundary
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AF-Heisenberg chains. The gap and midgap energies in
the thermodynamic limit are obtained by extrapolating
numerical results for small chain sizes up to 200 sites. It
is revealed that some of the gap and midgap energies for
the half-integer spin chains fit well to a scaling function
derived from the quantum Sine-Gordon model, but other
low energy excitations fit less well.

In this work, numerical results are presented for the
low-energy states of the 1D AF-Heisenberg model in both
uniform and staggered fields using an exact diagonaliza-
tion technique for finite systems. The spin gap is cal-
culated as a function of applied staggered field in the
presence of a small uniform field (0 ≤ H < 0.1). With
respect to the magnitude of the staggered magnetic field,
it is demonstrated that two regimes exist in which the real
critical exponent of the energy gap can be calculated. It
is important to note to which one of these regimes the
numerical data are related. In Section 2, the scaling be-
haviour of the gap is considered, based upon available in-
formation about its limiting behaviour. The leading ex-
ponent of the staggered field h depends on H , both at
finite sizes, and in the thermodynamic limit. In Section 3,
an explanation is given for how, under certain conditions,
the numerical calculations may produce incorrect results
for the critical exponent. A perturbative approach[25] is
applied to find the correct critical exponent in the small-x
(x = Nhν(H)) regime. In Section 4, the scaling parameter
x is increased to investigate the critical exponent in the
large-x regime. Finally, the summary and conclusions are
presented in Section 5.

2 The scaling behaviour of the gap

In high field neutron-scattering experiments on Cu ben-
zoate — which is a quasi-one dimensional S = 1/2 an-
tiferromagnet — the magnetic field induces a gap in the
excitation spectrum of the magnet [1]. The observed gap
is proportional to H0.65

0 , where H0 is the magnitude of
the applied field. Other experiments (where the exponent
is ≈2/3) identify the cause of the gap as being due to the
staggered field [6,11].

Using so-called bosonization techniques, Affleck et al.
showed that, the gap scales as

∆ (h,H) ∼ hν(H), (2)

where ν(H) is the critical exponent. When H is strictly 0,
ν(H = 0) = 2/3. The dependence of the exponent ν(H)
on H is investigated numerically in reference [15]. Their
approach is based on the η-exponent, defined through
the static structure factor of the model in the absence
of a staggered field (h = 0). They show that there is
a relationship between the critical exponent of the gap
and the η-exponent. Then, by computing the η-exponent
of the structure factor of the model, they predict the
H-dependence of ν(H). Similarly, the effect of an external
field on the gap of the 2D AF Heisenberg model with DM
interactions has been investigated [16]. It is shown that

the effect of the external field on the gap can be predicted
from the on-site magnetization of the model.

Here, the evolution of the gap is investigated using
conformal estimates for a small perturbation h � 1, and
finite-size scaling estimates of the energy eigenvalues of
small chains in the presence of the staggered field (h �= 0).
We show that there are two regimes in which the real
critical exponent can be calculated numerically, and it is
important to note to which one of these regimes the nu-
merical data are related.

The Hamiltonian (1) can be rewritten in the form

Ĥ = Ĥ0 + V

Ĥ0 =
∑

j

[
J
−→
S j .

−→
S j+1 −HSx

j

]

V = h
∑

j

(−1)j Sz
j , (3)

where Ĥ0 is exactly solvable by the Bethe ansatz, and the
staggered field h� 1 is very small. For a small perturba-
tion V , we can use conformal estimates.

The large distance asymptotic behaviour of the corre-
lation function of the model in the absence of the staggered
field (h = 0) is given by [17]

〈Sz
j S

z
j+n〉 ∼

(−1)n

nα(H)
, (4)

where α(H) is a function of the uniform (H) field. This is
found using the Bethe ansatz as

α(H) ∼ 1 − 1
2 ln (1/H)

, H → 0 (5)

where α(0) = 1 and α(2) = 1/2.
By examining the response of the model to a pertur-

bation, and performing an infinitesimal renormalization
group with a scale λ, one can show that the staggered
magnetic field scales as h′ = hλ2−α(H)/2. Hence, the en-
ergy gap scales according to equation (2), where the crit-
ical exponent is

ν (H) =
2

4 − α (H)
. (6)

This result is also obtained using the bosonization tech-
nique in reference [7]. For example, in the absence of a
uniform magnetic field, ∆ ∼ h2/3, in agreement with the
bosonization and experimental results. Increasing the uni-
form field H , makes α(H) smaller, which implies that the
critical gap exponent ν(H) decreases with increasing uni-
form field H .

To examine the effect of the uniform field on the en-
ergy gap, we have implemented the modified Lanczos algo-
rithm [18] for finite-size chains (N = 12, 14, . . . , 24) using
periodic boundary conditions. The energy gap is calcu-
lated for different chain lengths and uniform fields in the
interval 0 ≤ H < 0.1. The energy gap as a function of the
chain length (N), uniform (H) and staggered (h) fields is
defined as

∆ (N, h,H) = E1 (N, h,H) − E0 (N, h,H), (7)
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where E0 is the ground state energy and E1 is the first
excited state. In the absence of a staggered field (h = 0),
the spectrum of the AF Heisenberg model is gapless up to
H = 2J . The gap vanishes in the thermodynamic limit,
proportional to the inverse of the chain length [19]

lim
N→∞

∆ (N, h = 0, H)−→A(H)
N

. (8)

The coefficient A is known exactly from the solution to the
Bethe ansatz [20]. In principle, it also can be computed
by methods based on conformal invariance and finite-size
scaling [21–23].

When the staggered field is applied, a non zero gap de-
velops. Thus, the staggered field hc = 0 is a critical point
for the model. In general, the critical point hc of an infi-
nite system in the Hamiltonian formulation, is defined as
the value of h at which the mass gap ∆(h,H) vanishes as
equation (2). Using the Lanczos scheme ∆(N, h,H) can
be calculated. This approaches ∆(h,H) when N is large.
The natural measure of the deviation of the finite system
from the infinite one is L/L0, where L is the linear di-
mension of the finite system (L = Na, and a is the lattice
spacing) and L0 is the correlation length of the infinite sys-
tem (L0 = ξa). Thus, it can be assumed that ∆(N, h,H)
depends on h through L/L0 as

∆ (N, h,H) ∼ f

(
L

L0

)
= f (x), (9)

where x = Nhν(H) is a scaling parameter, and f(x) is
the scaling function. As expected, the behaviour of this
equation in the combined limit,

N −→ ∞, h −→ 0 (x
 1), (10)

is consistent with equation (2). Thus, it can be assumed
that the asymptotic form of the scaling function f(x) is

f (x) ∼ xφ. (11)

In addition, we need a factor to cancel the dependence of
f(x) on N when N −→ ∞. This factor must be of the
form N−1; therefore,

∆ (N, h,H) ∼ N−1f (x). (12)

Multiplying both sides of equation (12) by N gives

lim
N→∞(x�1)

N∆ (N, h,H) ∼ x. (13)

Equation (13) shows that the large-x behaviour of
N∆(N, h,H) is linear in x where the scaling exponent
of the energy gap is ν(H).

3 The small-x regime

Since the scaling of the gap can only be observed in the
thermodynamic limit, and for very small values of h, the

energy gap of the model is calculated using several val-
ues of staggered field 0.001 ≤ h ≤ 0.01, and different
chain lengths N = 12, 14, . . . , 24, for fixed uniform fields
0 ≤ H < 0.1. When N∆(N, h,H) versus Nhν(H) is plot-
ted for H = 0, 0.03, 0.05, 0.07, 0.09, using periodic bound-
ary conditions, then the linear behaviour of equation (13)
is described well by ν(H) ∼= 2.0, independent of H . This
is very far from the correct value of critical exponent
ν(H) ≤ 2/3 (Eq. (6)).

Note that the horizontal axes values in the
small-x regime are limited to very small values of
x = Nhν(H) < 0.0024. Thus, it is not possible to obtain
the real scaling exponent of the gap in the thermodynamic
limit when N −→ ∞ or x
 1.

When x is small, meaning h is very small, this may be
too far from the thermodynamic behaviour that is needed
to observe the correct scaling. For very small h in the finite
size systems (N ∼ 24) the value of x will be small (x� 1),
which prevents information on the large-x behaviour of the
scaling function f(x) from being obtained. In effect here,
the values of the energy gap coming from a finite system
represent perturbative behaviour [25]. This is reproduced
here for convenience, as follows.

Starting from the Hamiltonian equation (3), the energy
eigenstates of Ĥ0 carry momentum p = 0 or p = π.

T |ψn(h = 0, H)〉 = ± |ψn(h = 0, H)〉, (14)

where, T is translation operator, and {|ψn(h = 0, H)〉}
are eigenstates of the unperturbed Hamiltonian Ĥ0. The
operator

∑
j(−1)jSz

j changes the momentum of the state
by π; therefore,

〈ψn(0, H) | V |ψn(0, H)〉 = 0. (15)

Thus, the gap can be rewritten in the following form.

∆ (N, h,H) = ∆ (N, 0, H) + g1 (N,H)h2

+ · · · + gn (N,H)h2n, (16)

where n is an integer. Higher order terms can be neglected
for h ≤ 0.01. The second-order perturbation correction is
not zero in the staggered field: the leading nonzero term
is h2. If the small-x behaviour of the scaling function is
defined as f(x) ∼ xφs , then

ν(H)φs = 2. (17)

This shows that in the small-x regime, N∆(N, h,H) is a
linear function of x2/(ν(H)). This is in agreement with the
data in the small-x regime, where φs = 1, and according to
equation (17), the value of ν(H) is found to be ν(H) = 2.0.

The large-N behaviour of g1(N,H) at fixed H is
given by

lim
N→∞

g1(N,H) � a1 (H)Nµ(H). (18)

This leads to

∆ (N, h,H) � A (H)
N

(
1 + b1 (H)Nµ(H)+1h2

)
, (19)
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Fig. 1. The value of scaling function g1(N, H) at the fixed uni-
form field H = 0, versus the chain length N = 12, 14, . . . , 24.
The best fit is obtained by ν(H = 0) = 2.05 ± 0.01. In
the inset, the function g1(N, H) is plotted versus N at the
uniform field H = 0.05. The best fit is obtained using
ν(H = 0.05) = 2.33 ± 0.01. Data for different staggered fields
0.001 ≤ h ≤ 0.005 coincide exactly.

where b1(H) is a constant (at fixed H). equation (19) can
be written in terms of the scaling variable x:

N∆ (N, h,H) � A (H)
(
1 +Nµ(H)+1−2/(ν(H))x2/(ν(H))

)
.

(20)
For large-N limit this equation should be independent of
N ; hence, the relation between µ(H) and ν(H) is

ν (H) =
2

µ (H) + 1
. (21)

Therefore, an examination of the large-N behaviour of
g1(N,H) is warranted. To determine the exponent µ(H),
the expression

g1 (N,H) � ∆ (N, h,H) −∆ (N, 0, H)
h2

(22)

versusN is plotted in Figure 1 for fixed values of staggered
field h (0.001 ≤ h ≤ 0.005), and different sizes, N =
12, 14, . . . , 24, at the uniform field H = 0. The best fit
to the data has µ(H = 0) = 2.04 ± 0.01. The inset in
Figure 1 shows g1(N,H) versusN at fixedH = 0.05. Here,
the best fit has µ(H = 0.5) = 2.33 ± 0.01. The data for
different h values, fall exactly on each other, which shows
that the results for g1(N,H) in fixed uniform field H , are
independent of the staggered field h, as expected. Using
equation (21) it is found that, ν(H = 0) = 0.66 ± 0.01
and ν(H = 0.05) = 0.60 ± 0.01. The numerical tool is
also used to calculate the critical exponent ν(H) at H =
0.03, 0.07, 0.09. The results are given in Table 1.

Table 1. The exponent of g1(N, H) and gap exponent versus
different values of the uniform field H in small-x and large-x
regimes.

H µ νS νL

0.0 2.05 0.65 0.66
0.03 2.20 0.63 0.64
0.05 2.33 0.60 0.63
0.07 2.58 0.56 0.62
0.09 2.80 0.53 0.60

Fig. 2. Difference between the two lowest energy levels and the
ground state energy as a function of the staggered magnetic
field h, for finite chain length N = 24, and H = 0, over the
interval 0.01 ≤ h ≤ 0.4.

4 The large-x regime

Due to computer memory constraints, the maximum chain
length considered in the numerical calculations is N = 24.
Therefore, the value of x cannot be increased by increasing
the size of chain. The problem appears when the calcu-
lation employs the density matrix renormalization group
(DMRG) method. When this occurs, the calculation may
be extended to larger sizes, N ∼ 200, subject to the re-
striction that this does not allow x to be much larger than
one (for 0.001 < h < 0.01). Instead, the staggered field
may be increased to reach larger x. Note here that, in
general, level crossing usually occurs between the energy
levels in finite size systems. This can change the behaviour
of the gap and lead to incommensurate effects [24]. When,
for example, the excitation energies of the three lowest lev-
els as a function of h (0.01 ≤ h ≤ 0.4) are calculated for
N = 24 and H = 0, it turns out that the two lowest
excited states do not cross each other (see Fig. 2). This
means that x can be made larger by increasing h up to
h = 0.4. Since the regime where the correct scaling of the
gap can be observed is only when h is small, h = 0.4 is
made the upper limit used in the calculations. Figure 3
shows the results of calculations for large-x, made using
the Hamiltonian equation (1), and taking into account
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Fig. 3. The product of energy gap and chain length (N∆)
versus Nhν(H) at the uniform field H = 0. Over the interval
0.04 ≤ h ≤ 0.4, linear behaviour is obtained by choosing ν(H =
0) = 0.66 for all chain lengths, N = 18, 20, 22, 24. In the inset,
N∆ is plotted for uniform field H = 0.05. The linear behaviour
is obtained with ν(H = 0.05) = 0.63. Data for different chain
lengths coincide.

the limitations previously described. Therefore, these re-
sults are over the interval 0.04 ≤ h ≤ 0.4, which pro-
vides large-x using chain lengths N = 18, 20, 22, 24, and
H = 0. The inset in Figure 3 shows N∆(N, h,H) versus
x = Nhν(H) at fixed uniform field H = 0.05. This yields
ν(H = 0) = 0.66, and ν(H = 0.05) = 0.63. These repre-
sent the unique values for ν which give linear behaviour.
Moreover, the results for different size chains coincide ex-
actly, which is expected from the scaling properties.

The results of further calculations covering the low uni-
form field region over the interval 0 ≤ H < 0.1 are given
in Table 1. The quantities µ, the resulting νs that is ob-
tained from perturbative approach, and the corresponding
result for the large-x regime νl, for different values of the
uniform field H are included.

Figure 4 shows the critical exponent ν(H) versus the
uniform field H . The quantities νs and νl start at the
known value 2/3, and then decrease with the increasing
uniform field H . The exponents are in good agreement
with each other, and are in accord with the exponents
derived using the field formalism (Eq. (6)). The inset in
Figure 4 shows the dependence on H of the critical ex-
ponent ν. This is obtained directly by extrapolating the
numerical results for the energy gap using a staggered field
over the interval 0.001 ≤ h ≤ 0.01. Clearly, the behaviour
of the gap in finite systems is different from its behaviour
at the thermodynamic limit. Furthermore, the behaviour
of the gap also deviates from the predicted scaling be-
haviour with respect to the magnitude of the staggered
magnetic field.

Fouet et al. investigated the gap-induced by the stag-
gered field h at the saturation uniform field Hc = 2J [26].

Fig. 4. Graph of the critical exponent ν versus uniform field
H . Both critical exponents νs (squares) and νl (circles) start
at the known value 2/3 and then decrease with the increasing
uniform field H . In the inset, the critical exponent ν is plotted.
This is obtained directly by extrapolating the numerical results
for the energy gap over the interval 0.001 ≤ h ≤ 0.01.

Using field theoretical arguments, they find that the gap
scales as ∆(h,Hc) ∼ h4/5. By applying the DMRG
method to systems with sizes up to N = 100, they also
estimate that the exponent of the energy gap is 0.81. The
results of calculations extended to Hc in the present work
yield similar values: νs(Hc) = 0.78 and νl(Hc) = 0.82.

5 Conclusions

The 1D AF-Heisenberg model in the presence of both uni-
form (H) and staggered (h) magnetic fields is investigated
using the exact diagonalization technique in this work.
The modified Lanczos method is implemented to obtain
the excited state energies to the same accuracy as in the
ground state. This formalism is applied to model chains
up to N = 24 in length (limited by presently available
computer resources). When the energy gap in the thermo-
dynamic limit is obtained by extrapolating the numerical
results for finite systems, it is found that the behaviour
of the gap apparently deviates from the predicted scaling
properties. This deviation depends on the magnitude of
the staggered magnetic field (h). For small values of the
staggered magnetic field (0.001 ≤ h ≤ 0.01), the energy
gap of a finite system behaves essentially in a perturbative
manner. Thus, the scaling exponent of the energy gap can-
not be extrapolated from numerical results in this regime.

Results, based on a general finite size scaling proce-
dure, are presented for the H-dependence of the critical
exponent of the gap. Two regimes are identified where
the real critical exponent ν(H) can be calculated numer-
ically. To find the correct exponent of the gap in small-x
regime (x = Nhν(H) � 1), the scaling behaviour of the
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coefficient of the leading term in the perturbation expan-
sion is used, as described previously in reference [25]. In
the large-x regime, the correct critical exponent is calcu-
lated using standard finite size scaling via equation (13).
In addition, conformal estimates of the small perturbation
(h� 1) are used to provide the dependence of the critical
exponent on H (Eq. (6)). The numerical results for both
regimes in this work are in good agreement with others
obtained by theoretical and numerical approaches.

A. Langari, M.R.H. Khajehpour, G.I. Japaridze, J. Abouie,
and M. Kohandel are thanked for helpful discussions.
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